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In recent decades it has been shown [1, 2, 3, 4] that the relativistic effects in fusion plasmas
with temperatures of tens of keV, despite 7, < mec?, can produce non-negligible effects in
transport. At the same time, nearly all predictions for fusion reactor scenarios, even for aneutron
projects with 7, ~ 100 keV, have been made using nonrelativistic transport theory [5, 6].

In the present work, we consider a hot plasmas where the electrons with ;. ~ ¢ require a fully
relativistic description (here, u;, = pyo/m, = \/T/me). We also assume that the hydrodynamic
flows in such plasmas are slow compared to the thermal velocity, V < u;, (runaway electrons are
excluded from consideration) and such flows are considered in the weakly relativistic approach.
Such consideration, fully relativistic for thermal plasma and weakly relativistic for fluxes, we
call “mixed approach”. In addition, improvements in the methods for solving the relativistic
kinetic equation are proposed. Since the main goal of this paper is to include relativistic effects

and to preserve the classical-like form of the equations, we do not use the 4-vector formalism.

Derivation of the relativistic Braginskii equations
To begin with, it is convenient to write a relativistic kinetic equation for the electron distribu-

tion function f, in divergent form and without the 4-vectors,
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where vy is velocity and u; = v is momentum per unit mass with ¥ = /1 +u2/c? as the
relativistic factor. All other notations are standard.

As usual [1, 7], we assume that electrons are near thermodynamic equilibrium, f, = fo.0+ fe1,

where f,q is “drifting” Maxwell-Jiittner distribution function, which can be represented as
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with 4 = mc*/T > 1, and 1 = 1/4/1 —V?2/c2, which is the relativistic flow factor, related

to the hydrodynamic flow. Since V2 /c? < 1, we take it below in the weakly relativistic limit,

Y =~ 1 +V?/2¢%. The normalizing coefficient equals
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with K, (1) as the modified Bessel function of second kind of the n-th order.
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To calculate moments in the local frame, let us first introduce the rest frame in which there
are no hydrodynamic flows. In this case, Maxwell-Jiittner distribution function Eq. (2) should
be taken with V =0 and Y = 1. All variables, related to the rest frame, are labeled below by
prime. Evidently, (1) = 1 and (v}) =0, where (F) = 1 [ F f,d*u.

It is also necessary to define the momentum,

nm (uy,) = —nmc? (Y =1)w) = 29k 4)

where gy, is the heat flux. Note that the link between <u§(> and gy is a purely relativistic effect.

Relation between the thermal energy and temperature is convenient to represent as [3]:
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Non-relativistic limit in Eq. (5) is evident.
The next required moment is the flux of momentum, nm<v§<u’j> = p&y;+ My j, which, similarly
to the non-relativistic representation, decomposes into the hydrostatic scalar pressure, p = nT,

and the (traceless) stress viscous tensor 7 [7],
1 u?
p= gnm<7> =nT, and m;= nm<v;€u']> — Py (6)

The moments related to the collision operator are also required. Since the laws of conserva-
tion of momentum and energy in Coulomb collisions of electrons with themselves are automati-
cally satisfied, only the contributions from electron-ion collisions are survived. The electron-ion
collisional friction force, Rii ,

RS = | muCLid*u. (7)

The collision energy exchange rate between the electrons and the classical ions, P¢ can be

written as [2]
PY = /mcz(i" —1)Clid*u = Cyy (1) (1 + 2 + 22)P(€cfl)’ ®)
u u

where P(eci[) is the classical (non-relativistic) electron-ion energy exchange rate, P(ecil) o< —%.
For integration of Eq. (1) with appropriate weights, the weakly relativistic Lorentz transfor-

mation of variables from the local frame to the rest frame has to be performed,

ViV, Viu;
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Apart from that, it is necessary to take into account the invariance of d>u /Y= a3 /Y.
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Performing direct integration of Eq. (1), the standard continuity equation can be obtained,

0 0
E(YO”) + E (YonVi) = 0. (10)

Formally this equation has exactly the same form as in the fully relativistic approach. A weakly
relativistic expansion for y is assumed, but does not apply here for compactness.

The next is the momentum balance equation, obtained by integration with the weight nmuy,
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Here and below, the (weakly) relativistic corrections, which disappear at V /¢ — 0, are labeled

by 6. The correction for the momentum is
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The stress tensor is classical-like, Iy ; = po; + 7 j +nmV;V;, while its correction is

Vs
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Correction for friction force (see also Eq. (7)) is
Ve, .
ORY =~ = (P + Eijj-l). (14)

The electric current is J = enV = en(V, — V;). Note that calculating the corrections does not
require additional integration.

Integrating Eq. (1) with the weight nmc?(y — 1), we obtain the energy balance equation,
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Here, W is defined by Eq. (5), K = anVz, and relativistic correction for total energy is
V2 1
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The energy flux is also classical-like,
O = (W+p+K)Vita+ V), a7
while its relativistic correction is
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Correction for the electron-ion collision energy exchange rate is equal to
R V2
0P ~ —P“. 19
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To summarize, we obtained a set of relativistic transport equations, Eq. (10), Eq. (11) and
Eq. (15). The terms without the delta are written in the classical-like form and in the non-
relativistic limit coincide with the corresponding terms in the classical Braginskii equations,

while the correction terms (with the delta) are purely relativistic.
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Solution of the linearized relativistic kinetic equations

The standard method for a closure of the transport equations is to solve the linearized kinetic
equation by expansion in Sonine polynomials, also called Laguerre polynomials of order 3/2,
i.e. L£l3/ 2) (x) with x = mv? /2T, (see [1, 7] and the references therein). In the classical case
this method is the most effective, but in the relativistic approach its efficiency is questionable
because the Sonine polynomials are not eigenfunctions of the RHS of linearized relativistic
kinetic equation. As a consequence, a convergence of the series degrades with increasing 7.

Here, instead of Sonine polynomials, we propose to use generalized Laguerre polynomials
L,(fx)(ic) of order o = 3/2+R(u), where k = u(y—1) and u = mc?/T (see Eq. (5)). An ad-
vantage of this method is that LS,a) (x) are eigenfunctions for the RHS of linearized relativistic
equation for arbitrary temperature. For simplicity, we demonstrate the method for V = 0. In this

case the linearized relativistic kinetic equation can be written as follows,

e in 5
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where A, "7 are the thermodynamic forces,

E
A(1>=V1ogp+e7 and  A® =ViogT. Q1)

While the angular dependence can be found, as usual, by expansion in spherical Legendre
harmonics, the energy dependence of f,; can be represented as the series in L,S“)(K). Since
L(()a)(K‘) =1 and Lga)(K‘) = % — K — R, the RHS of Eq. (20) can be represented by the linear
combination of only these terms. As a consequence, the series for the solution converges as fast
as in the classical case, but with validity for arbitrary temperature.

Following this line, all transport coefficients are expressed by integrals as follows,
M = %Cz\}}fd%ukb(aa)('f)cab( m’””"L ( )fao fbo)
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structure as in the classical case, and in the non-relativistic limit they coincide.

(22)

where w = KR( ) index a is for e and b for e,i. Formally, these coefficients have the same
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