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In recent decades it has been shown [1, 2, 3, 4] that the relativistic effects in fusion plasmas

with temperatures of tens of keV, despite Te � mec2, can produce non-negligible effects in

transport. At the same time, nearly all predictions for fusion reactor scenarios, even for aneutron

projects with Te ∼ 100 keV, have been made using nonrelativistic transport theory [5, 6].

In the present work, we consider a hot plasmas where the electrons with ute∼ c require a fully

relativistic description (here, ute≡ pte/me =
√

2Te/me). We also assume that the hydrodynamic

flows in such plasmas are slow compared to the thermal velocity, V � ute (runaway electrons are

excluded from consideration) and such flows are considered in the weakly relativistic approach.

Such consideration, fully relativistic for thermal plasma and weakly relativistic for fluxes, we

call “mixed approach”. In addition, improvements in the methods for solving the relativistic

kinetic equation are proposed. Since the main goal of this paper is to include relativistic effects

and to preserve the classical-like form of the equations, we do not use the 4-vector formalism.

Derivation of the relativistic Braginskii equations

To begin with, it is convenient to write a relativistic kinetic equation for the electron distribu-

tion function fe in divergent form and without the 4-vectors,

∂ fe

∂ t
+

∂

∂xk
(vk fe)+

∂

∂uk

(
e
m

(
Ek +

1
c

[
v×B

]
k

)
fe

)
=Cee( fe)+Cei( fe), (1)

where vk is velocity and uk = γvk is momentum per unit mass with γ =
√

1+u2/c2 as the

relativistic factor. All other notations are standard.

As usual [1, 7], we assume that electrons are near thermodynamic equilibrium, fe = fe0+ fe1,

where fe0 is “drifting” Maxwell-Jüttner distribution function, which can be represented as

fe0 =CMJ
n

π3/2u3
te

exp
[
−µγ0

(
γ− 1

γ0
− Vkuk

c2

)]
, (2)

with µ = mc2/T � 1, and γ0 = 1/
√

1−V 2/c2, which is the relativistic flow factor, related

to the hydrodynamic flow. Since V 2/c2� 1, we take it below in the weakly relativistic limit,

γ0 ' 1+V 2/2c2. The normalizing coefficient equals

CMJ =

√
π

2µ

e−µ

K2(µ)
= 1− 15

8µ
+O

( 1
µ2

)
, (3)

with Kn(µ) as the modified Bessel function of second kind of the n-th order.
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To calculate moments in the local frame, let us first introduce the rest frame in which there

are no hydrodynamic flows. In this case, Maxwell-Jüttner distribution function Eq. (2) should

be taken with V = 0 and γ0 = 1. All variables, related to the rest frame, are labeled below by

prime. Evidently, 〈1′〉= 1 and
〈
v′k
〉
= 0, where 〈F〉= 1

n
∫

F fed3u.

It is also necessary to define the momentum,

nm
〈
u′k
〉
=

1
c2 nmc2 〈(γ ′−1)v′k

〉
=

1
c2 qk, (4)

where qk is the heat flux. Note that the link between
〈
u′k
〉

and qk is a purely relativistic effect.

Relation between the thermal energy and temperature is convenient to represent as [3]:

W ≡ nmc2 〈
γ
′−1

〉
=
(3

2
+R
)

nT with R = µ

(K3(µ)

K2(µ)
−1
)
− 5

2
=

15
8µ

+O
( 1

µ2

)
. (5)

Non-relativistic limit in Eq. (5) is evident.

The next required moment is the flux of momentum, nm
〈
v′ku′j

〉
= pδk j+πk j, which, similarly

to the non-relativistic representation, decomposes into the hydrostatic scalar pressure, p = nT ,

and the (traceless) stress viscous tensor πk j [7],

p =
1
3

nm
〈u′2

γ ′
〉
= nT, and πk j = nm

〈
v′ku′j

〉
− peδk j. (6)

The moments related to the collision operator are also required. Since the laws of conserva-

tion of momentum and energy in Coulomb collisions of electrons with themselves are automati-

cally satisfied, only the contributions from electron-ion collisions are survived. The electron-ion

collisional friction force, Rei
k ,

Rei
k =

∫
mu′kC

′
ei d3u′. (7)

The collision energy exchange rate between the electrons and the classical ions, Pei, can be

written as [2]

Pei =
∫

mc2(γ ′−1)C ′ei d3u′ =CMJ(µ)
(

1+
2
µ
+

2
µ2

)
Pei
(cl), (8)

where Pei
(cl) is the classical (non-relativistic) electron-ion energy exchange rate, Pei

(cl) ∝−Te−Ti

T 3/2
e

.

For integration of Eq. (1) with appropriate weights, the weakly relativistic Lorentz transfor-

mation of variables from the local frame to the rest frame has to be performed,

uk ' u′k + γ0γ
′Vk +

VkVj

2c2 u′j, γ ' γ0γ
′+

Vju′j
c2 . (9)

Apart from that, it is necessary to take into account the invariance of d3u/γ = d3u′/γ ′.

48th EPS Conference on Plasma Physics P5a.125



Performing direct integration of Eq. (1), the standard continuity equation can be obtained,
∂

∂ t
(γ0n)+

∂

∂xk
(γ0nVk) = 0. (10)

Formally this equation has exactly the same form as in the fully relativistic approach. A weakly

relativistic expansion for γ0 is assumed, but does not apply here for compactness.

The next is the momentum balance equation, obtained by integration with the weight nmuk,
∂

∂ t

(
nm
(
Vk +δUk

))
+

∂

∂x j

(
Πk j +δΠk j

)
= enEk +

1
c

[
J×B

]
k +
(
Rei

k +δRei
k
)
. (11)

Here and below, the (weakly) relativistic corrections, which disappear at V/c→ 0, are labeled

by δ . The correction for the momentum is

δUk '
1

nmc2

(
qk +

(
W + p

)
Vk

)
+

1
c2 πk jVj. (12)

The stress tensor is classical-like, Πk j = pδk j +πk j +nmVkVj, while its correction is

δΠk j '
VkVj

c2

(
W + p

)
+

1
c2 (q jVk +qkVj)+

Vs

2c2

(
πksVj +π jsVk

)
. (13)

Correction for friction force (see also Eq. (7)) is

δRei
k '

Vk

c2

(
Pei +

1
2

VjRei
j
)
. (14)

The electric current is J = enV = en(Ve−Vi). Note that calculating the corrections does not

require additional integration.

Integrating Eq. (1) with the weight nmc2(γ−1), we obtain the energy balance equation,
∂

∂ t

(
W +K +δE

)
+

∂

∂xk

(
Qk +δQk

)
= JkEk +Rei

k Vk +
(
Pei +δPei). (15)

Here, W is defined by Eq. (5), K = nmV 2

2 , and relativistic correction for total energy is

δE ' V 2

c2

(
W + p

)
+

1
c2 (πi jVi +q j)Vj. (16)

The energy flux is also classical-like,

Qk =
(

W + p+K
)

Vk +qk +πk jVj, (17)

while its relativistic correction is

δQk '
V 2

c2

((
W +

p
2

)
Vk +

1
2

qk

)
+

VjVk

2c2

(
3q j +π jlVl

)
. (18)

Correction for the electron-ion collision energy exchange rate is equal to

δPei ' V 2

2c2 Pei. (19)

To summarize, we obtained a set of relativistic transport equations, Eq. (10), Eq. (11) and

Eq. (15). The terms without the delta are written in the classical-like form and in the non-

relativistic limit coincide with the corresponding terms in the classical Braginskii equations,

while the correction terms (with the delta) are purely relativistic.
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Solution of the linearized relativistic kinetic equations

The standard method for a closure of the transport equations is to solve the linearized kinetic

equation by expansion in Sonine polynomials, also called Laguerre polynomials of order 3/2,

i.e. L(3/2)
n (x) with x = mv2/2Te (see [1, 7] and the references therein). In the classical case

this method is the most effective, but in the relativistic approach its efficiency is questionable

because the Sonine polynomials are not eigenfunctions of the RHS of linearized relativistic

kinetic equation. As a consequence, a convergence of the series degrades with increasing Te.

Here, instead of Sonine polynomials, we propose to use generalized Laguerre polynomials

L(α)
n (κ) of order α = 3/2+R(µ), where κ = µ(γ − 1) and µ = mc2/T (see Eq. (5)). An ad-

vantage of this method is that L(α)
n (κ) are eigenfunctions for the RHS of linearized relativistic

equation for arbitrary temperature. For simplicity, we demonstrate the method for V = 0. In this

case the linearized relativistic kinetic equation can be written as follows,

e
mc

[v×B]k
∂ fe1

∂uk
−Clin

e ( fe1) =−vk

(
A(1)

k +
(

κ− 5
2
−R
)

A(2)
k

)
fe0, (20)

where A(1,2)
k are the thermodynamic forces,

A(1) = ∇ log p+
eE
T

and A(2) = ∇ logT. (21)

While the angular dependence can be found, as usual, by expansion in spherical Legendre

harmonics, the energy dependence of fe1 can be represented as the series in L(α)
n (κ). Since

L(α)
0 (κ) = 1 and L(α)

1 (κ) = 5
2 − κ −R, the RHS of Eq. (20) can be represented by the linear

combination of only these terms. As a consequence, the series for the solution converges as fast

as in the classical case, but with validity for arbitrary temperature.

Following this line, all transport coefficients are expressed by integrals as follows,

Mab
nm = τab

na
C−1

MJ
∫

d3uukL(α)
n (κ)Cab

(
w mauk

Ta
L(α)

m (κ) fa0; fb0

)
,

Naa
nm = τaa

na
C−1

MJ
∫

d3uukL(α)
n (κ)Caa

(
fa0; w mauk

Ta
L(α)

m (κ) fa0

)
,

(22)

where w = κR( 2
γ+1

)
; index a is for e and b for e, i. Formally, these coefficients have the same

structure as in the classical case, and in the non-relativistic limit they coincide.
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