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Introduction

Although adopted by Grad-Shafranov equation, EFIT, VMEC, etc., the nested closed
flux surface assumption does not necessarily hold when the axial symmetry of magnetic
field is absent. An abundant amount of research has focused on how to stimulate a chaotic
field layer at the plasma boundary to mitigate destructive type-1 edge localized modes [1-
5]. The transverse intersection of invariant manifolds is a signature of chaos, indicating
the intrinsic unpredictability (of field line tracing) in the long run. Based on the theory of
dynamical system and chaos [6-10], we offered the invariant manifold growth formula in
cyclindrical coordinates, and revealed how the X/O cycles shift under perturbation. The
symbol B is used to denote a general 3D vector field in our work, which is not required
to be a magnetic field. Mathematicians might expect to try them on Lorenz/Rdssler at-

tractors.

DP™ evolution along cycles

The Jacobian of Poincare map, DP™, is acquired by a 2mm ¢ _-integration of
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where X, (¢, b, ) is a field line initiating from zy = (2o, 2oz)" at ¢,. D denotes
the derivative w.r.t. zq. Actually, DX, (ds, @) is the state transition matrix of 2’ = Az.
It is natural to be curious on the relationship of DP"™(¢) at different ¢ of a cycle so
that one can save time by avoiding repeated integration from ¢, to ¢, +2mm, from ¢,

to ¢g +2mm, ... We deduced this relationship after tedious operations. Now we know



48th EPS Conference on Plasma Physics P5b.110

DP™(p) on a cycle satisfies

d +m — +m
w27 (¢) = [A(), DPF™(o)], (2)

which is named the DP™ evolution formula. Obviously this is a system of ordinary differ-

ential equations of the 2 x 2 matrix DP"™(¢), the eigenvectors of which determine from

which the invariant manifolds grow.
Invariant manifold growth formula
By tracing from all points on the cycle and analyzing the relevant differentials (see

Fig. 1), the classical simple field line tracing equation is extended to the invariant manifold

growth formula in cylindrical coordinates,
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the initial condition of which is that 8,X"/*(s,$)|, = 0 equals the normalized eigenvector
of DP™(¢). The two parameters of the manifold are the azimuthal angle ¢ and the curve
(intersected by the invariant manifold and the R-Z section at ¢ angle) length s in the

R-Z section, as shown below.
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Figure 1: Geometric diagram to show the relationship among the differentials ds, d¢, dR and dZ,
which are used in the deduction of the invariant manifold growth formula. It is supposed that there exists

a limit cycle at bottom, from which an invariant manifold grows.

Orbit and cycle shift
We further regard the whole magnetic field as a functional argument of Poincaré map
and utilize the functional (Fréchet) derivative from functional analysis (see [11] for a
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concise introduction) to obtain the following results concerning the orbit/cycle behaviour
under perturbation. Before we study X /O cycles, we need to begin with the general orbits
in a vector field. The following orbit shift formula under perturbation depicts the shift of
an orbit X, [B](¢) under the perturbation AB, where the purple term ¢(¢) distinguishes
the equation from the similar differential equations of DX ;. 6.X,,[B; AB](¢) is the first
variation of X ,,[B](¢) w.r.t. AB.
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A 2mm ¢-integration of the equation above tells in which direction the Poincare map
P (z) is pushed away from z,, and how far. Notice this equation is a linear inhomoge-

neous one with zero initial condition 6 X ;[B; AB]|(0) = 0, hence the solutions for different

pol[
AB can be superposed linearly.
As one can easily imagine, both the original x, and P™[B+ AB]|(z,) are no longer on

the cycle. To locate the new x0 point on the cycle, we utilize DPm(x0) as follows,
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This is X/O-point shift formula under perturbation. Undoubtedly, the most important
perturbation field is the derivative of magnetic field itself w.r.t. time, i.e. 9B/0t. If AB
is substituted for 08/0t, the formula will give the X/O point shift velocity. The factor
[DP™ —T)~1 decides that the formula does not work for cycles on the rational flux surfaces
of magnetic fields, because their DP™ have eigenvalues 1, which make it impossible to do
the matrix invert.

Since we have known how to calculate Az [AB] at a single R-Z section, one might be
curious on how Az, [AB|(¢) at different ¢ are related, like DP™ evolution formula. The

derivative of Az [AB|(¢p) w.r.t. ¢ turns out to be (also after tedious computation)

15800 = Az, +q(0) )
or more strictly 35ASI:O[O;AQ§](¢) =A(¢) 6Az,[0; AB](d) +q(@) (6)
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Now we can discuss about X/O-cycle shift formula instead of just X/O-point.
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T Gl o — Invariant manifold growth formula

Figure 2: Thought process mapping of the formulas given in our work

Conclusion and discussion
Our existing results concerning the invariant manifolds of a general 3D vector field are
concluded in Fig. 2. Numeric implementation is planned to keep up the progress of anal-

ysis.
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