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Introduction

Although adopted by Grad-Shafranov equation, EFIT, VMEC, etc., the nested closed
flux surface assumption does not necessarily hold when the axial symmetry of magnetic
field is absent. An abundant amount of research has focused on how to stimulate a chaotic
field layer at the plasma boundary to mitigate destructive type-I edge localized modes [1-
5]. The transverse intersection of invariant manifolds is a signature of chaos, indicating
the intrinsic unpredictability (of field line tracing) in the long run. Based on the theory of
dynamical system and chaos [6-10], we offered the invariant manifold growth formula in
cyclindrical coordinates, and revealed how the X/O cycles shift under perturbation. The
symbol 𝐵 is used to denote a general 3D vector field in our work, which is not required
to be a magnetic field. Mathematicians might expect to try them on Lorenz/Rössler at-
tractors.

𝒟𝒫𝑚 evolution along cycles

The Jacobian of Poincare map, 𝒟𝒫𝑚, is acquired by a 2𝑚𝜋 𝜙𝑒-integration of

𝜕
𝜕𝜙𝑒

𝒟𝑋𝑝𝑜𝑙(𝜙𝑠,𝜙𝑒) = 𝜕𝑅𝐵𝑝𝑜𝑙/𝐵𝜙
𝜕(𝑅,𝑍) (𝜙𝑒)

⏟⏟⏟⏟⏟⏟⏟
∶=A(𝜙𝑒)

𝒟𝑋𝑝𝑜𝑙(𝜙𝑠,𝜙𝑒), (1)

where 𝑋𝑝𝑜𝑙(𝜙𝑠,𝜙𝑒,𝑥0) is a field line initiating from 𝑥0 = (𝑥0𝑅,𝑥0𝑍)𝑇 at 𝜙𝑠. 𝒟 denotes
the derivative w.r.t. 𝑥0. Actually, 𝒟𝑋𝑝𝑜𝑙(𝜙𝑠,𝜙𝑒) is the state transition matrix of 𝑥′ = A𝑥.
It is natural to be curious on the relationship of 𝒟𝒫𝑚(𝜙) at different 𝜙 of a cycle so
that one can save time by avoiding repeated integration from 𝜙1 to 𝜙1 + 2𝑚𝜋, from 𝜙2

to 𝜙2 + 2𝑚𝜋, ……We deduced this relationship after tedious operations. Now we know
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𝒟𝒫𝑚(𝜙) on a cycle satisfies

d
d𝜙𝒟𝒫±𝑚(𝜙) = [A(𝜙), 𝒟𝒫±𝑚(𝜙)] , (2)

which is named the 𝒟𝒫𝑚 evolution formula. Obviously this is a system of ordinary differ-
ential equations of the 2 × 2 matrix 𝒟𝒫𝑚(𝜙), the eigenvectors of which determine from
which the invariant manifolds grow.

Invariant manifold growth formula

By tracing from all points on the cycle and analyzing the relevant differentials (see
Fig. 1), the classical simple field line tracing equation is extended to the invariant manifold
growth formula in cylindrical coordinates,

𝜕𝑋𝑢/𝑠

𝜕𝑠 =

𝑅𝐵𝑝𝑜𝑙
𝐵𝜙

− 𝜕𝑋𝑢/𝑠

𝜕𝜙

±∥𝑅𝐵𝑝𝑜𝑙
𝐵𝜙

− 𝜕𝑋𝑢/𝑠

𝜕𝜙 ∥
2

, (3)

the initial condition of which is that 𝜕𝑠𝑋𝑢/𝑠(𝑠,𝜙)|𝑠 = 0 equals the normalized eigenvector
of 𝒟𝒫𝑚(𝜙). The two parameters of the manifold are the azimuthal angle 𝜙 and the curve
(intersected by the invariant manifold and the R-Z section at 𝜙 angle) length 𝑠 in the
𝑅-𝑍 section, as shown below.

ϕ ↗

dϕ
dZ

dR

Xu/s(s+ ds, ϕ+ dϕ)

Xu/s(s, ϕ) Xu/s(s, ϕ+ dϕ)

ϕ ↗

X
u/s(s = const.,

ϕ)

Xu/s
(s, ϕ = const.)

Figure 1: Geometric diagram to show the relationship among the differentials d𝑠, d𝜙, d𝑅 and d𝑍,
which are used in the deduction of the invariant manifold growth formula. It is supposed that there exists
a limit cycle at bottom, from which an invariant manifold grows.

Orbit and cycle shift
We further regard the whole magnetic field as a functional argument of Poincaré map

and utilize the functional (Fréchet) derivative from functional analysis (see [11] for a
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concise introduction) to obtain the following results concerning the orbit/cycle behaviour
under perturbation. Before we study X/O cycles, we need to begin with the general orbits
in a vector field. The following orbit shift formula under perturbation depicts the shift of
an orbit 𝑋𝑝𝑜𝑙[B](𝜙) under the perturbation ΔB, where the purple term 𝑞(𝜙) distinguishes
the equation from the similar differential equations of 𝒟𝑋𝑝𝑜𝑙. 𝛿𝑋𝑝𝑜𝑙[B;ΔB](𝜙) is the first
variation of 𝑋𝑝𝑜𝑙[B](𝜙) w.r.t. ΔB.

𝜕
𝜕𝜙 𝛿𝑋𝑝𝑜𝑙[B;ΔB](𝜙) =

∶=A(𝜙)
⏞⏞⏞⏞⏞⏞⏞⏞⏞𝜕(𝑅𝐵𝑝𝑜𝑙/𝐵𝜙)

𝜕(𝑅,𝑍) (𝜙) 𝛿𝑋𝑝𝑜𝑙[B;ΔB](𝜙)+

∶=𝑞(𝜙)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
⎡⎢
⎣

𝑅/𝐵𝜙 0 −𝑅𝐵𝑅/𝐵2
𝜙

0 𝑅/𝐵𝜙 −𝑅𝐵𝑍/𝐵2
𝜙

⎤⎥
⎦

(𝜙) ⎛⎜
⎝

𝛿[𝐵𝑅,𝐵𝑍,𝐵𝜙]𝑇

𝛿B
ΔB⎞⎟

⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
simply =[Δ𝐵𝑅,Δ𝐵𝑍,Δ𝐵𝜙]𝑇

(4)

A 2𝑚𝜋 𝜙-integration of the equation above tells in which direction the Poincare map
𝒫𝑚(𝑥0) is pushed away from 𝑥0, and how far. Notice this equation is a linear inhomoge-
neous one with zero initial condition 𝛿𝑋𝑝𝑜𝑙[B;ΔB](0) = 0, hence the solutions for different
ΔB can be superposed linearly.

As one can easily imagine, both the original 𝑥0 and 𝒫𝑚[B + ΔB](𝑥0) are no longer on
the cycle. To locate the new x0 point on the cycle, we utilize DPm(x0) as follows,

x0

Pm(x0)Pm(x0) +DPm(x0) ·∆x0[∆B]

x0 +∆x0[∆B]

x0+∆x0 = Pm(x0)+DPm(x0)·∆x0

[DPm(x0)− I] ·∆x0 = x0 − Pm(x0)

∆x0[∆B] = [DPm(x0)− I]
−1 · [x0 − Pm(x0)]︸ ︷︷ ︸

=−δXpol[B;∆B](2mπ)+o(∆B)

This is X/O-point shift formula under perturbation. Undoubtedly, the most important
perturbation field is the derivative of magnetic field itself w.r.t. time, i.e. 𝜕ℬ/𝜕𝑡. If ΔB

is substituted for 𝜕ℬ/𝜕𝑡, the formula will give the X/O point shift velocity. The factor
[𝒟𝒫𝑚 −I]−1 decides that the formula does not work for cycles on the rational flux surfaces
of magnetic fields, because their 𝒟𝒫𝑚 have eigenvalues 1, which make it impossible to do
the matrix invert.

Since we have known how to calculate Δ𝑥0[ΔB] at a single R-Z section, one might be
curious on how Δ𝑥0[ΔB](𝜙) at different 𝜙 are related, like 𝒟𝒫𝑚 evolution formula. The
derivative of Δ𝑥0[ΔB](𝜙) w.r.t. 𝜙 turns out to be (also after tedious computation)

d
d𝜙Δ𝑥0 = AΔ𝑥0 +𝑞(𝜙) (5)

or more strictly 𝜕
𝜕𝜙𝛿Δ𝑥0[0 ;ΔB](𝜙) = A(𝜙) 𝛿Δ𝑥0[0 ;ΔB](𝜙)+𝑞(𝜙) (6)

Now we can discuss about X/O-cycle shift formula instead of just X/O-point.
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Figure 2: Thought process mapping of the formulas given in our work

Conclusion and discussion

Our existing results concerning the invariant manifolds of a general 3D vector field are
concluded in Fig. 2. Numeric implementation is planned to keep up the progress of anal-
ysis.
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