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The present study addresses the complex issue of flow control in tokamak plasmas. Flow

shaping in large size magnetized plasmas is not easily achievable with external momentum

sources. Flows are rather determined by intrinsic physics that combine competing turbulent

and collisonal effects in presence of 3D magnetic perturbations. Turbulence can indeed drive

the mean plasma toroidal velocity VT through wave-particle interactions that provide a finite

momentum to the plasma. More generally, the dynamic effects induced by turbulence can be

included in the toroidal Reynolds stress Π that can be written as a sum of a viscous, pinch and

residual terms:

Π =−χ∂rVT +V VT +Πres (1)

Where χ is the turbulent viscosity, V is a pinch coefficient and Πres is the residual stress. The

latter is the source term accounting for the wave-particle interactions and that drive the intrinsic

rotation of the plasma in absence of 3D magnetic perturbation.
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Figure 1: Sketch of the modelled ripple/turbulence

competition on the equilibrium toroidal velocity.

This turbulent drive is well documented [1,

2, 3, 4]. The impact of 3D magnetic pertur-

bation on spontaneous rotation is of a dif-

ferent nature. Such a perturbation constrains

particle trajectories with toroidal and poloidal

trappings. The resonant enhancement of col-

lisional processes of these trapped popula-

tions is responsible for a macroscopic effect

on flows, and constitutes the so-called neo-

classical theory. One can then shows that 3D

magnetic perturbation leads to magnetic brak-

ing M , i.e. a thermal force that sets the mean

toroidal velocity toward a finite value Vneo. It

can be expressed:

M =−νϕ(VT −Vneo) (2)
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with νϕ the neoclassical friction that sets at which rate the plasma velocity reaches Vneo. Usually

turbulent drive and 3D magnetic perturbation are handled separately in numerical simulations.
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Figure 2: Time trace of the toroidal velocity VT (a) and

the radial electric field Er (b) in 0.45< r/a< 0.55 (shaded

areas, mean: solid lines) for different ripple amplitudes.

In this work [5], they are treated on

an equal footing, which allows address-

ing the competition and also possible

synergies for the first time. To this aim,

both analytical theory and gyrokinetic

simulations with the GYSELA code [6]

are used. From Eq.1 and Eq.2, the ana-

lytical model simply reads:

∂tVT = M − r−1(rΠ)′ (3)

where r is the radial coordinate and ′

stands for the radial derivative. It leads

to an expression for the equilibrium ve-

locity:

VTeq =
νϕVneo − r−1(rΠres)

′

νϕ +χλv +V κv
(4)

with λv =−(rχV ′
Teq)

′/(rχVTeq) and κv = (rV VTeq)
′/(rV VTeq). As the neoclassical friction νϕ

is monotonous with the amplitude δ of the 3D magnetic perturbation, it appears that δ → 0 ⇒

VTeq → Vturb = − r−1(rΠres)
′

χλv+V κv
and δ → ∞ ⇒ VTeq → Vneo. As displayed in Fig.1, one can define

a critical amplitude δc of the perturbation such that VTeq(δc) = (Vneo +Vturb)/2. Above this

threshold, the plasma velocity is then closer to its neoclassical prediction than its turbulent one.

This value is then convenient to know the main drive of the intrinsic rotation. The interesting

feature of this quantity is that it only depends on the damping rates and not the sources terms, i.e.

νϕ(δc) = |λv|χe f f with the effective viscosity defined as χe f f = χ +(κv/λv)V . A consequent

numerical effort has been performed in order to validate this model. The considered magnetic

perturbation is a poloidally symmetric magnetic ripple with a radial gaussian envelope centered

at mid radius: δ (r) = δ0e−32(r/a−0.5)2
with an arbitrary δ0 and a the minor radius. Using the

gyrokinetic code GYSELA, the methodology consists in three steps. First, simulations with

only neoclassical contribution and including ripple have been successfully compared to the

neoclassical theory [7, 8] (in particular the neoclassical friction νϕ ). Secondly, in simulations of

Ion Temperature Gradient driven turbulence without ripple, turbulent momentum transport have

been analyzed and compared with available models of turbulent transport [5, 1, 2]. The viscosity

profile χ of the simulated has then been retrieved and the pinch V found negligible. Finally, all
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effects are self-consistently accounted for to assess the resulting flow. With the GYSELA results

on νϕ and χ , the critical ripple for the simulated turbulence is estimated at δc ∼ 0.55%. Two

other simulations with δ ≪ δc and δ ≫ δc then shows that only the latter case is strongly driven

by the magnetic braking, i.e. Fig.2. As displayed, the magnetic braking also influences the radial

electric field which is of prime importance for accessibility to improved confinement modes.

The order of magnitude of the critical amplitude can be obtained with some approximations.

First, κv/ and λv look quite complex to obtain in practice, but can be approximated according

that χ , V and VT follows the characteristic length scale of the equilibrium gradients. Using here

the temperature gradient length LT as a proxy, one can estimate λv ∼ L−1
T and κv ∼ L−2

T .
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Figure 3: Radial profiles of turbulent intensity shear, Er

shear, residual stress and its divergence. These profiles are

coarse-grained as detailed in [5].

Secondly, the so-called ripple-plateau

scaling for the neoclassical friction, i.e.

νϕ ∼ (NcVth/R)δ 2 (with Vth the ther-

mal velocity), is relevant for most toka-

maks. Finally, the gyroBohm scaling

for the effective turbulent viscosity, i.e.

χe f f ∼ Vthρ2
i /LT (with ρi the Larmor

radius), can be considered. A rule-of-

thumb can then be written for the criti-

cal ripple amplitude:

δc ∼
√

Nc
ρi

R

(
R
LT

)−3/2

(5)

Moreover, interplay mechanisms be-

tween magnetic braking and turbulent

momentum drive are here addressed.

This study is restrained to non-resonant

3D magnetic perturbation. With this

constraint, it is clear that the impact

of turbulence on the magnetic braking

is negligible as the only mechanism of

synergy is through mode-coupling on

the electric potential. However, the impact of magnetic braking on the turbulent drive is found

to be significant. As theoretical predictions showed that the toroidal Reynolds stress depends

on the shear of turbulent intensity I ′ [9] and the shear of radial electric field E ′
r [10]. Both of

these quantities are expected to be impacted by 3D magnetic perturbations. Indeed, the mode-
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coupling on the electric potential of resonant modes with the "neoclassical" modes coming from

the magnetic perturbation can modify the turbulent spectra, i.e. the turbulent intensity I . In ad-

dition, as seen in Fig.2, the neoclassical processes modify the radial electric field Er. However,

quantifying these impacts analytically is out of the scope of this study that rather make use of

gyrokinetic simulations. Once again, a radially gaussian magnetic ripple is considered as the

3D magnetic perturbation. The simulations have been performed with a flat profile of toroidal

velocity so the toroidal Reynolds stress is dominated by the residual stress Πres. The profiles of

I′, E ′
r, Πres and r−1(rΠres)

′ are plotted in Fig.3. It is found that the modification of I′ by ripple

is mild and not correlated with the change on the residual stress. However, the modification of

E ′
r by ripple is clearly correlated with the one observed on Πres. The effect is significant in our

simulations, as the source term r−1(rΠres)
′ even changes sign in presence of magnetic ripple.

This work can be of use to strengthen the predictions on flows and Er for real experiments where

these quantities play a major role for the plasma performances.
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