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Transport barrier using a vorticity source in 5D gyrokinetic simulations
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Turbulent transport [1] is an important limiting factor for fusion reactor devices efficiency.
It can be reduced through the presence of a transport barrier either in the core (ITB, Internal
Transport Barrier) or at the edge (ETB, Edge Transport Barrier, H-mode [2]) characterized by
a radially sheared electric field and a steep pressure gradient. As a consequence, a strong E X B
sheared poloidal flow is generated. Different theoretical hypothesis have been proposed to ex-

plain the effects of shear flow on turbulent plasma. The focus here is on large scale turbulent

structure suppression through E %X B poloidal shearing [3].
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With F the ion gyro-center distribution function, ¢ the elec-
line) at tw.p = 377920. The vortic-

ity source position s represented by trostatic potential, Xgc and v the gyro-center position and par-
the red vertical line. allel velocity respectively. # and € (F) are respectively the

gyro-average and the collision operators, the latter conserving both energy and particles. .
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represents the source terms (i.e. heat and/or poloidal momentum / vorticity source). The aver-
age over a flux-surface is defined by (...)pg = [[ ...J,dO0d@/ [[ J,dOd ¢ with J, = (B- ve)!

the flux-surface jacobian.

Vorticity source

The kinetic source term of poloidal momentum (i.e. vorticity) is defined as

T
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with @ = m;v} /2B the magnetic moment, S§ the source amplitude, S, (r) the radial profile
and 7§ the source temperature. No heat nor particles are injected in the system with this source.

The fluid vorticity conservation equation is given by
W + 0, = SyV3 S, “4)

with " =e ([ dv*_# [(dixg - Vr) F]) ¢ the fluid vorticity flux, W = e ([ dv_# [F]) . the fluid
vorticity, and SOViSr the fluid vorticity source term. To get equation (4), a gyro average of the
Vlasov equation (1) is performed before integrating over the velocity space. To obtain a 1D (i.e.
radial) equation for vorticity, a flux-surface average is also performed.

Transport barrier

When sheared poloidal fluxes are in place

(figure 1a), a "plateau” appears on the radial

ion pressure profile (figure 1b) at the source
location and the core pressure slightly in- 101

creases compared to the reference case (no

source). Since the source does not inject en-
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ergy in the system, the increase seen on the

radial pressure profile should result from the e ' e Ho

presence of some transport barrier. . . .
Figure 2: Total radial heat flux Qo (equation 5) as a

Turbulence quench function of radius and time with source (right) and with-
We compute the radial flux of energy with out source (left). The vorticity source radial position is

indicated by the red vertical line.

Q" = </é"(vf)+vfg)l:}dv> (5)
FS

where & = uB+ %vé”, vp = Vp-Vrand v = Vg - Vr which are respectively the curvature

plus B gradient and E x B drift velocities projected alond the radial axis.
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Figure 2 represents the total radial heat flux (equation 5) as a function of radius and time

normalized to the average gyro-Bohm heat flux (Qcg), ¢ » = (—ne0268VT20), 4 o With YGp =

P =p* Zg, the gyro-Bohm diffusivity. When the vorticity source is activated (figure 2b), the

total heat flux is reduced by one order of magnitude compared to the reference (figure 2a) case in

the source region. The total heat flux is also lower in the core region (r/a = [0.25,0.45]) with the

source activated than without.
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fusivity drops explain the observed plateau at the source
Figure 3: Time evolution of the turbulent radial location and the slight core pressure increase as less

heat diffusivity in the r/a = [0.15,0.6] (a) energy is lost to the edge.
andr/a=1[0.7,0.8] (b) regions with source

(blue dashed line) and without (solid or-

Structure changes

. The perturbed electrostatic potential is defined through
ange line).

8¢ (r,0,1)=0(r,0,9=0,1)—(¢(r,0,0,1)), (7

where (¢ (r,0,9)),, represents the toroidally axisymmetric modes of the potential. They are
removed so that zonal flows and convection cells are not taken into account. The autocorrelation
length Lac of §¢ is the Half Width at Half Maximum (HWHM) of the autocorrelation function
computed as a function of r, 6 and time on a sliding radial window [r — 87yax, 7 + O7max]. A
maximum radial extent of 07,4 = 20p. is sufficient to capture most of the turbulent radial
structures. Lac (Figure 4) remains close to 3.5p.; with a small £ x B shear rate level wgxp < 1

without the source but decreases where the flow shear rate is maximum (r/a = 0.75) with
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the source turned on. The radial extension of the turbulent structures is effectively reduced
locally by the E x B shear flow. However the correlation length increases in the range r/a €
[0.2;0.4] and decreases near r/a = 0.5 where shearing is not strong (|®gxp| < 1). Hence, we

cannot attribute the decrease of y7 and turbulence in those regions to the auto-correlation length

reduction.
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duced by the vorticity source. Those structures may get

tilted along the poloidal direction due to the high shear-

Figure 4: Flux surface and time average
ing levels, hence the change in the mean poloidal scale of
g levels, hence the change in the mean poloidal scale o of the correlation length Lac normalized to

the turbulent structures. the local ion gyro-radius as a function of
Conclusion radius without (orange solid line) and with
Injecting a strong E x B shear flow is effective in reduc- (P/ue dashed line) the source turned on.

. . . . . The red vertical line indicates the source
ing turbulence intensity and the radial extension of turbu-

location for the vorticity case.
lent structures. 5D gyrokinetic simulations show a slight

increase in core pressure and a « plateau » forming near the source region, which indicate the
presence of a transport barrier mechanism. The total heat flux and turbulent heat diffusivity are
significantly diminished in the source region but also slightly reduced in the core region when

edge poloidal shearing is in place.
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