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Turbulence is a critical and essential step in understanding and controlling plasmas, like mag-

netically confined fusion plasmas. In particular, the transport and diffusion of energetic particles

from the core to the walls of Fusion reactors. Other domains include particle acceleration driven

instabilities from plasma heating [1], magnetic reconnection [2], or laser-produced plasma [3].

Thus, turbulence is an essential part of plasma physics.

In the second half of the 20th century, a revolution in the theory of turbulence started with

the introduction of the quasilinear theory (QL) of turbulence [4]. Followed by a correction with

Figure 1: Arbitrary turbulent electric field autocor-

relation function, with Gaussian amplitude.

the name of resonance broadening (RB) [5].

QL considers nonlinear terms, the evolu-

tion of plasma particle distributions outside

plasma equilibrium. Physically, it interprets

the effects of turbulence as a random varia-

tion of particle speed throughout the plasma,

resulting in phase-space (PS) diffusion. For a

large majority of plasmas, QL theory accu-

rately describes plasma turbulence and parti-

cle transport. However, some inconsistencies

have been in experiments and simulations [6]

[7]. Indeed, nonlinear terms become significant as turbulence increases in amplitude.

The QL limit is expressed in terms Kubo number [8], defined as K = τ0/τb. Where τ0 is

the turbulent electric field auto-correlation time, and τb is the bounce time of electrostatically

trapped particles.

Physically, the Kubo number characterizes the type of trajectories charged particles will per-

form, trapped and free particles. In other words, the Kubo number represents the degree of

trapping a turbulent electric field will have over charged particles constituting the plasma.

Indeed, particles evolving in an electric potential/field can get trapped by local potential wells.

Typically, a trapped/free particle can not become free/trapped unless the system allows for en-

ergy transfers or particle collisions. In the case of plasma, energy transfers are possible in the
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form of wave-particle resonances, which change the form of the potential well and the energy

of particles, leading to transport and diffusion. Hence, quasilinear theory.

Figure 2: Phase-space of an arbitrary particle tra-

jectory in a turbulent electric field with Kubo num-

ber K = 2.24.

Thus, the QL theory describes the plasma

in the regime where particle trapping- detrap-

ping is strong K ≪ 1. In other words, the form

of the electric potential changes fast enough

for particles to perform partial arcs before

changing direction and speed, therefore per-

forming a Brownian-like trajectory in PS. As

turbulence amplitude increases K ≪ 1, parti-

cle trapping becomes important. In this case,

particle trajectories shift to random-walk-like

trajectories for the particle guiding-center, see

figure (2).

For modern plasma physicists interested in

transport and diffusion, the regime of interest becomes K ≥ 1 [9]. Therefore, a new description

of plasma dynamics is required since it is outside the applicability regime of QL theory.

We investigate the turbulent diffusion of particles and compare it against QL theory, including

RB. Different diffusion regimes are investigated, K ≪ 1 and K ≥ 1 in particular. We discuss the

limits of QL theory and possible avenues of study for K ≥ 1.

Quasilinear theory and diffusion coefitient

As mentioned previously, QL theory is used to compare against diffusion from numerical

simulations. QL describes the 1D motion of an ensemble of particles in a prescribed turbulent

electric field.

A result of QL and RB theories is an iterative method of calculatin the diffusion coefficient

of particles as a function of: Particle velocity v, mass m and charge q, and the autocorrelation

function of the electric field ⟨E(0,0)E(x, t)⟩ (shown in figure (1)).

D j
RB(v) =

( q
m

)2 ∫ +∞

0

∫ +∞

−∞

R j−1(v,x, t)⟨E(0,0)E(x, t)⟩dxdt . (1)

where j is the j-th iteration, R j(v,x, t) is a Gaussian probability distribution of particle velocities

which corrects for resonance broadening effects.

The turbulent electric field is expressed as a collection of sinusoidal waves with Gaussian

amplitude and Langmuir plasma dispersion relations. Therefore, equation (1) can be simplified
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by working in the Fourier space. Indeed, since the Fourier transform of a sinusoidal wave and a

Gaussian are known functions, this equation becomes

D j
RB(v) =

( q
m

)2 ∫ +∞

0
∑
k

Êk
2

2
R̂k, j cos [kvt +ωt]dt . (2)

Where R̂k, j and Êk are the Fourier components of R j and E respectively.

Numerical model and results

To compare against theory, we study the dynamics of test particles in a prescribed turbulent

electric field. In particular, we developed an algorithm that calculates N particle trajectories

Figure 3: Velocity standard deviation for K = 0.07

and v0 = 1.95 with Gaussian amplitude and Lang-

muir dispersion. Red line separates the first and sec-

ond diffusion regimes.

using a fourth-order Runge-Kutta algorithm.

At t = 0, N test particles are initialized

with initial random velocities v0, distributed

in a narrow Gaussian probability. And ran-

dom initial positions. By performing statistics

on particle trajectories, we can deduce the dif-

fusion coefficient as the slope of the velocity

variance σ2
v , figure (4) shows an example of

velocity variance for an arbitrary simulation

in the QL regime.

For all simulations, two regimes of diffu-

sion were observed:

- A first initial regime where velocity vari-

ance evolves linearly, whose slope represents

the diffusion coefficient.

- The second regime of diffusion, where velocity variance evolves with a slope of less inten-

sity.

Particle diffusion was studied for different values of Kubo number; results are plotted in

figure (4). Theoretical curves are calculated using the QL and RB theory, equation (2). We

observe qualitative and quantitative agreement between theory and numerical results for K ≪ 1.

Note, the impact of resonance broadening becomes significant for Kubo of the order of a few

percent (K ≃ 0.04). This impact corresponds to a flattening of diffusion curves, an increase in

maximum-diffusion-velocity, and an enlargement of the interval velocities diffuse.

For K > 1, we observe qualitative agreement with the theory for velocities around the reso-

nance velocity. However, we measure a non-zero diffusion from numerical simulations for fast
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particles, while negligible diffusion is predicted by quasilinear theory and resonance broaden-

ing.

Figure 4: Quasi-linear diffusion coefficient and nu-

merical diffusion ifor different values of Kubo num-

ber, for a random electric field of Gaussian ampli-

tude with Langmuir dispersion.

Moreover, in both diffusion regimes, we

observed that the diffusion coefficient evolves

as a power of the Kubo number, Kβ , where β

takes different values for different intervals of

K. Indeed, for the initial diffusion regime, as

Kubo increases, K > 0.5 diffusion is propor-

tional to K−1.

Two values of β were observed for the sec-

ond diffusion regime. For a small Kubo num-

ber, K < 0.2, the measured diffusion evolves

as K−3/2. Additionally, around K = 0.2, the

growth of diffusion shifts to be proportional

to K−5/2. This shift corresponds to the QL

theory limit, which leads to believe that this

limit is more fundamental than QL suggests.
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