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The control of radial particle transport in tokamak plasmas is a necessary condition for ob-

taining good confinement [1]. Such a goal can be achieved by creating internal transport barri-

ers (ITBs): regions of reduced radial (cross field) particle transport in the plasma column [2].

ITBs have been produced in JET by the application of strong supplementary heating during the

current rise phase of the plasma discharge [3]. The most widely studied type of ITB is the so-

called edge transport barrier (ETB), related to steep pressure gradients at the plasma edge [4].

Recently, a second type of ITB has been investigated, the shearless transport barriers (STBs),

which appears in tokamak plasmas with reversed shear profiles [5]. These profiles can be ob-

tained by modifying the safety factor profile, and by applying radial electric fields in a specific

way [6]. For example, reversed shear profiles of q(r) have one or more extrema, at which shear-

less toroidal magnetic surfaces are formed [7]. Shearless surfaces represent ITBs in the sense

that cross-field transport is reduced therein [4].

One of the characteristic features of anomalous cross-field transport in tokamak plasmas is

the presence of electrostatic drift wave instabilities arising from density gradients [1]. A mathe-

matical model for describing the test particle motion in drift waves has been proposed by Horton

et al. [6]. This model consider a test particle subject to a combined equilibrium magnetic field B

and an electric field E related to the electrostatic waves. Under these assumptions, the guiding-

center motion has two components: (a) a passive advection along the magnetic field lines, with

velocity v∥ and (b) an E×B drift velocity, such that the guiding-center equation of motion is

dx
dt

= v∥
B
B
+

E×B
B2 (1)

The tokamak equilibrium magnetic field has components Bϕ and Bθ , the toroidal and poloidal

magnetic field components, respectively. In the large aspect ratio approximation (ε = a/R ≪ 1)

B ≈ Bϕ ≫ Bθ . The safety factor of the magnetic surfaces is given by q(r) = rBϕ/RBθ . The

electric field is the sum of an equilibrium radial electric component Er and a fluctuating part

Ẽ =−∇φ̃ representing the electrostatic instabilities in tokamak edge [6]. The latter is modeled
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by a Fourier expansion in the form [8]

φ̃(x, t) = ∑
n

φn cos(Mθ −Lϕ −nω0t +αn) (2)

where the coefficients M and L are the dominant Fourier modes, with harmonics of the lowest

frequency ω0. Writing Eq. (1) in components, and considering action angle variables, I = (r/a)2

and ψ = Mθ −Lϕ , we obtain the set of equations [6]:

dI
dt

= 2M∑
n

φn sin(ψ −nωot), (3a)

dψ

dt
= ε

v∥(I)
q(I)

[M−Lq(I)]− MEr(I)√
I

. (3b)

Numerically integrating equations (3), we obtain stroboscopic Poincaré maps by plotting the

trajectories in instants t j = j(2π/ω0). In order to numerically solve the equations (3) we use

parameters of the TCABR tokamak, operating at the Physics Institute of São Paulo University

(Brazil), which has Bϕ = 1.1 T and aspect ratio ε ≈ 0.3. Since we are interested chiefly in non-

monotonic radial profiles, this model possesses transport barriers corresponding to shearless

invariant curves in the phase space, defined by an extreme point in rotation number profile [7].

To every regular (nonchaotic) orbit we can associate a rotation number Ω given by the mean

rotation angle in the Poincaré section. Given an initial condition (I0,ψ0), the rotation number

of this orbit is given by:

Ω = lim
n→∞

n−1

∑
i=0

(ψi+1 −ψi)

n
, (4)

where ψi is the angle of i-th intersection in the Poincaré map.

Reversed shear profiles have been known to improve plasma confinement. In order to generate

negative shear regions, it is necessary that the safety factor radial profile be non-monotonic.

MHD-based models of a cylindrical plasma column suggest the following profile of the safety

factor:

q(r) = qa
r2

a2

[
1−

(
1+µ

′ r2

a2

)(
1− r2

a2

)ν+1
]−1

, µ
′ = µ

ν +1
µ +ν +2

(5)

where qa is the safety factor at plasma edge. We fixed the parameters ν = 0.8 and q0 = 3.75,

making the remaining parameter µ a function of qa, which we choose as our control parameter.

The q(r) profile is plotted on Figure 1(a) for some values of the control parameter. The equilib-

rium electric field was chosen to be non-monotonic according Er(r) = 3αr2 + 2β r+ γ , where

α =−1.14, β = 2.529, and γ =−2.639 are parameter values after a normalization. A normal-
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ized parallel velocity profile to be used in this work, and consistent with TCABR observations,

is given by v∥(I) =−3.15+5.58tanh(14.1I +−9.26), once we apply the normalization factor

v0 = E0/B0. We assume the spatial dominant mode to have M/L = 16/4, which are typical

Figure 1: (a) Non-monotonic safety factor profile for some values of parameter qa and magnetic shear
profile (b).

numbers in the wave spectrum at the tokamak plasma edge [6]. The temporal modes considered

are n = 2,3,4, based on the fluctuating spectrum of TCABR [8], with normalized amplitudes

(φ2,φ3,φ4) = (11.74,2.077,0.2443)×10−3. The fundamental frequency of the temporal modes

is around 10 kHz, which implies in a normalized angular frequency ω0 = 5.224 [8]. Assuming

that the rest of profiles and parameters are fixed, the safety factor will be chosen to be the tunable

parameter which determines the dynamical behavior of the system.

The variation of the safety factor profile changes the behavior of shearless transport barrier.

Figure 2 displays examples of Poincaré sections, in action-angle variables, for some values of

control parameter qa. In Figure 2(a), obtained for qa = 4.20, we observe two large (twin) islands

and a chaotic region around them. Between these twin islands there is a shearless curve, located

at the action value corresponding to an extremum of the rotation number profile [Fig. 3(a)].

The chaotic region around the inner islands grows as the parameter qa decreases and eventually

causes the breakup of the shearless curve, depicted in [Fig. 2(b)] for qa = 3.44. Noteworthy, if

the value of qa is further decreased, the shearless curve between the two twin islands reappears,

as in [Fig. 2(c)] for qa = 3.40, since the corresponding rotation number profile has an extremum

for this parameter value [Fig. 3(b)].

The transport barrier isolates chaotic orbits in two areas. Therefore, whenever a shearless

barrier disappears the chaotic orbits merge together leading to global transport. We conclude

that the shearless curves break up and reappear, takes place by local changes of the rotation

number profile due to variations of safety factor profile.

48th EPS Conference on Plasma Physics P5b.127



Figure 2: Poincaré sections for given values of safety factor: (a) qa = 4.20, (b) qa = 3.44 and (c) qa =
3.40. The shearless curve (red line) is broken for some intervals of qa, as seen in (b).

Figure 3: Rotation number profile corresponding to the Poincaré sections depicted in Figures 2(a) and
(e). The extrema for each case are marked by red points and indicate a shearless curve.
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