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Onset of shearless transport barriers in a magnetically confined plasma
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An E x B drift wave transport model [1] was implemented to investigate the onset and break-
up of shearless transport barriers (STBs) when considering a non-monotonic radial electric field
profile for a magnetically confined plasma. These barriers were found by using the rotation num-
ber profile, since they are located in the profile’s vanishing-derivative position, and analyzed by
stroboscopic Poincaré phase portraits obtained by numerically integrating the motion equations.
Considering as control parameters the amplitude of the electrostatic potential perturbation, non-
resonant mode, and the radial position of the electric field extreme value, we found intervals of
parameters values for which the barrier exists, breaks up or even bifurcates into two or three
secondary shearless curves. Also, we found effective transport barriers related with stickiness
regions which appear both before and after the STB breaks up. In general, we noted that the
STB can emerge recurrently even if we are increasing the perturbation or displacing the electric
field profile.

In first place, let us consider that the plasma particles are under the action of an electrostatic
field, E(x,), which can be decomposed into a radial mean part, E,(r)é,, and a floating part,
E(x,t)=-V§(0,0,1),

E(x,t) =E,(r)é,—V§(8,0,t). (1)

The floating electrostatic potential, @, is regarded as a superposition of harmonic waves travel-

ing in the poloidal and toroidal directions, 6 and ¢,
$(6,9,1) =Y ¢ycos(M6 — Lo —nayt — o), 2
n

where M and L are their dominant wave numbers, respectively, @y their fundamental angular
frequency, ¢, the amplitude and o, the phase for each perturbation mode.
Also, we assume that the plasma is magnetised by a magnetic field, B(x), which is assumed

to be in the form of a screw pinch configuration, i.e, the B field has a 8 and a ¢ components,

B(X) = Byég +B(pé(p; B %B(P > By, 3)
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for a tokamak approximated as a 27R periodic cylinder, where R is the major radius of the torus.
It means that a/R = € < 1, with a the minor radius of the plasma.

Finally, for a test particle in the plasma, let us assume that its guiding center moves along the
magnetic field lines with velocity v| and an E x B/B? drift,

ix B ExB
a Vgt g

)

On using two new variables, the action I = (r/a)? and the angle w = M6 — L, the equation of

motion (4) reduces to the 1.5-degrees-of-freedom dynamical system

g = 2MZ¢,, sin(y — nawot — o)
™ &)
dy M—Lg(D)] M
ar ~ g

where ¢(I) = rB/RBy is the safety factor profile. In order to obtain (5), we adimensionalize the
equation of motion (4) using the characteristic scales a, Ey and B.

For the tokamak TCABR, we adopted the parameters Ep =4.6 kV/m,B=1.1T,a=0.18 m
and € ~ 0.3. For the plasma profiles, we used the profiles proposed in [2, 3], namely, for the
equilibrium radial electric field, E,(r) = 3a(r/a)? +2B(r/a) + v, with (a, B, 7) = (—0.563,
1.250, —1.304), for the safety factor, ¢(r) = 1.04-3.0(r/a)?, and for the plasma toroidal veloc-
ity, v| = —1.43 +2.82tanh(20.30r/a — 16.42).

! we noted that in the interval

Taking the perturbation angular frequency @y as 62 rad - ms™
I=10.2,1.4] only two modes are resonant, n = 3 and n = 4. So, we just considered three pertur-
bation modes, as in [2, 3, 4], ¢3 = 1.0 x 1073, Os =0.12 % 1073, and a non-resonant mode, M,
which we varied from 0 to 8.5 x 1073 with a stepsize 0.1 x 1073, Moreover, keeping « fixed,
we considered the parameter k = — 3 /(3a¢), which is the radial position of the extreme value of
E,, and repeated the same procedure described below varying k with a stepsize 0.001.

Thus, we integrated numerically the set of equations (5) and constructed the y x I phase
space drawing a point every period T; = j27/ay, j =0,1,2,...,N. The existence of the STB
was verified through the extreme values of the rotation number profile, 2, which is determined
by
(0)

From figures 1 and 2, we note that the STB prevents the chaotic transport outside the plasma,
however, its appearance is recurrent. We see that there are several intervals for the control pa-
rameters, ¢» and k, where the barrier can set on, break up or bifurcate, even if we are increasing

the perturbation amplitude.
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Figure 1: Rotation number of the STB as a function of the parameters (a) ¢ and (b) k. Red
(black) bars indicate the existence (non-existence) of shearless barriers. Blue and green bars

indicate intervals with two or three barriers, respectively.
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Figure 2: For ¢» = 1.5 x 1073, (a) in the Poincaré section, we see a shearless transport barrier
colored in red which disconnects two chaotic regions. (b) The barrier is determined through the

maximum value of the rotation number profile.

In figure 3(a), a stickiness region appears next to the STB. It behaves as an effective barrier
when the actual shearless curve is broken up, see figure 3(b). In this region, there are few
crossings between the manifolds and, as a result, an orbit in the black (blue) region will spend

a long time to cross to the blue (black) one.

Conclusions

We identified intervals where the barrier exists, is broken up or bifurcates into two or three
additional barriers, for the parameters ¢, and k.

We verified that shearless transport barriers offer a strong resistance to the chaotic transport
even after they break up. In this process, a stickiness region can appear trapping the chaotic

orbit for a long time.
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Figure 3: (a) For ¢, = 2.0 x 1072, a stickiness region appears before the break-up of the barrier
in (b) for ¢» = 2.1 x 1073, In panel (b), we plot the stable (black and purple) and the unstable

(red and blue) manifolds related with the stickiness.

We studied the dynamics of the stickiness region making use of the unstable and stable man-
ifolds. We found that, in this region, crossings between manifolds barely occur, leaving few
routes to the orbit to travel across the remnant of the barrier.
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